Bounds on some van der Waerden numbers
نویسندگان
چکیده
For positive integers s and k1,k2, . . . ,ks, the van der Waerden number w(k1,k2, . . . ,ks;s) is the minimum integer n such that for every s-coloring of set {1,2, . . . ,n}, with colors 1,2, . . . ,s, there is a ki-term arithmetic progression of color i for some i. We give an asymptotic lower bound for w(k,m;2) for fixed m. We include a table of values of w(k,3;2) that are very close to this lower bound for m = 3. We also give a lower bound for w(k,k, . . . ,k;s) that slightly improves previously-known bounds. Upper bounds for w(k,4;2) and w(4,4, . . . ,4;s) are also provided.
منابع مشابه
A New Method to Construct Lower Bounds for Van der Waerden Numbers
We present the Cyclic Zipper Method, a procedure to construct lower bounds for Van der Waerden numbers. Using this method we improved seven lower bounds. For natural numbers r, k and n a Van der Waerden certificate W (r, k, n) is a partition of {1, . . . , n} into r subsets, such that none of them contains an arithmetic progression of length k (or larger). Van der Waerden showed that given r an...
متن کاملOn the van der Waerden numbers w(2;3,t)
On the van der Waerden numbers w(2; 3, t) Abstract In this paper we present results and conjectures on the van der Waerden numbers w(2; 3, t). We have computed the exact value of the previously unknown van der Waerden number w(2; 3, 19) = 349, and we provide new lower bounds for t = 30, we conjecture these bounds to be exact. The lower bounds for w(2; 3, t) with t = 24,. .. , 30 refute the conj...
متن کاملAvoiding triples in arithmetic progression ∗
Some patterns cannot be avoided ad infinitum. A well-known example of such a pattern is an arithmetic progression in partitions of natural numbers. We observed that in order to avoid arithmetic progressions, other patterns emerge. A visualization is presented that reveals these patterns. We capitalize on the observed patterns by constructing techniques to avoid arithmetic progressions. More for...
متن کاملA van der Waerden Variant
The classical van der Waerden Theorem says that for every every finite set S of natural numbers and every k-coloring of the natural numbers, there is a monochromatic set of the form aS+b for some a > 0 and b ≥ 0. I.e., monochromatism is obtained by a dilation followed by a translation. We investigate the effect of reversing the order of dilation and translation. S has the variant van der Waerde...
متن کاملImproving the Use of Cyclic Zippers in Finding Lower Bounds for van der Waerden Numbers
For integers k and l, each greater than 1, suppose that p is a prime with p ≡ 1 (mod k) and that the kth-power classes mod p induce a coloring of the integer segment [0, p− 1] that admits no monochromatic occurrence of l consecutive members of an arithmetic progression. Such a coloring can lead to a coloring of [0, (l − 1)p] that is similarly free of monochromatic l-progressions, and, hence, ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 115 شماره
صفحات -
تاریخ انتشار 2008