Bounds on some van der Waerden numbers

نویسندگان

  • Tom C. Brown
  • Bruce M. Landman
  • Aaron Robertson
چکیده

For positive integers s and k1,k2, . . . ,ks, the van der Waerden number w(k1,k2, . . . ,ks;s) is the minimum integer n such that for every s-coloring of set {1,2, . . . ,n}, with colors 1,2, . . . ,s, there is a ki-term arithmetic progression of color i for some i. We give an asymptotic lower bound for w(k,m;2) for fixed m. We include a table of values of w(k,3;2) that are very close to this lower bound for m = 3. We also give a lower bound for w(k,k, . . . ,k;s) that slightly improves previously-known bounds. Upper bounds for w(k,4;2) and w(4,4, . . . ,4;s) are also provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method to Construct Lower Bounds for Van der Waerden Numbers

We present the Cyclic Zipper Method, a procedure to construct lower bounds for Van der Waerden numbers. Using this method we improved seven lower bounds. For natural numbers r, k and n a Van der Waerden certificate W (r, k, n) is a partition of {1, . . . , n} into r subsets, such that none of them contains an arithmetic progression of length k (or larger). Van der Waerden showed that given r an...

متن کامل

On the van der Waerden numbers w(2;3,t)

On the van der Waerden numbers w(2; 3, t) Abstract In this paper we present results and conjectures on the van der Waerden numbers w(2; 3, t). We have computed the exact value of the previously unknown van der Waerden number w(2; 3, 19) = 349, and we provide new lower bounds for t = 30, we conjecture these bounds to be exact. The lower bounds for w(2; 3, t) with t = 24,. .. , 30 refute the conj...

متن کامل

Avoiding triples in arithmetic progression ∗

Some patterns cannot be avoided ad infinitum. A well-known example of such a pattern is an arithmetic progression in partitions of natural numbers. We observed that in order to avoid arithmetic progressions, other patterns emerge. A visualization is presented that reveals these patterns. We capitalize on the observed patterns by constructing techniques to avoid arithmetic progressions. More for...

متن کامل

A van der Waerden Variant

The classical van der Waerden Theorem says that for every every finite set S of natural numbers and every k-coloring of the natural numbers, there is a monochromatic set of the form aS+b for some a > 0 and b ≥ 0. I.e., monochromatism is obtained by a dilation followed by a translation. We investigate the effect of reversing the order of dilation and translation. S has the variant van der Waerde...

متن کامل

Improving the Use of Cyclic Zippers in Finding Lower Bounds for van der Waerden Numbers

For integers k and l, each greater than 1, suppose that p is a prime with p ≡ 1 (mod k) and that the kth-power classes mod p induce a coloring of the integer segment [0, p− 1] that admits no monochromatic occurrence of l consecutive members of an arithmetic progression. Such a coloring can lead to a coloring of [0, (l − 1)p] that is similarly free of monochromatic l-progressions, and, hence, ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2008